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The tortuosity factor for volume diffusion in porous solids, 7, is constructed mathematically from 
properties of their connected porosity based on Hg porosimetry and related measurements. Noncy- 
lindrical diffusion paths are identified and incorporated in the construction. The resulting equation, 
7 = x (0.92y)‘+“, for the first time makes possible the computation of r without recourse to 
diffusion measurement. The term x is a function of pore volume; y is derived from porosimetry and 
surface area data; and E is obtained from ordinary D(p) vs p data where p is pore radius. The 
computed 7 agrees with diffusion-determined values for many catalysts and other oxidic mate- 
risk. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The tortuosity factor 7 in porous solids 
connects the “effective” or observed diffu- 
sivity to a reference diffusivity, commonly 
by D,rr = D(B) *f/r. Herefis the total con- 
nected-pore volume fraction and fi is a 
mean radius of the pores of the material. 
Often D(6) can be written &,G(fi> or 
D&jY$), where Db is the bulk diffusivity of 
the operating diffusant system and G and L 
are continuous functions of pore radius for 
gaseous (I, 2) and for liquid (3-5) diffusant 
systems. 

The determination of T by experimental 
measurement of D,n and use of the above 
equation seems clouded by historical 
choice of fi or of D(6). Nonetheless, r 
clearly varies over a wide range from mate- 
rial to material (6). Its earliest conception 
as a simple matter of diffusion path tortuos- 
ity (7) was soon found insufficient; yet 
other theoretical approaches (e.g., (8, 9)) 
produced relatively constrained values 
from idealized pore models and could no- 
wise relate the wide range found to instru- 
mentally measurable properties of porosity 
(6). The unique approach taken by Wakao 

I Present mailing address: I I5 Wilshire Court, Dan- 
ville, Calif. 94526. 

and Smith (10) resulted in a deduction that 
T = l/f, variable to be sure but not sustained 
as a general form by the large body of em- 
pirical data (6). As recently as 1985 (II ), 
the only recourse for the determination of r 
was still by diffusion measurements. Those 
techniques are so difficult that many work- 
ers in catalysis submit to alternatives which 
impede their best kinetic analytical efforts. 

There should be a way of computing r 
from measurable porosity characteristics. 
This concept was included in rudimentary 
form in an earlier paper treating catalyst re- 
activity (12); but that form soon evidenced 
a need for refinement (13). Notice has also 
been taken of the common practice (II, 14, 
15) of modeling diffusion paths through po- 
rous bodies as always cylindrical, i.e., of 
constant radius throughout. That idealized 
model has to be superseded. Finally, the 
correct selection of a reference diffusivity, 
e.g., D(6), becomes of no small importance 
itself. 

The purpose of this paper is accordingly 
to present a mathematical construction of r 
founded on measurable material properties; 
and in so doing to utilize a realistic descrip- 
tion of porosity and a sound interpretation 
of the yield of common measurement tools. 
Uniform, isotropic materials will be as- 
sumed. Fick’s 1st Law will be used to de- 
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scribe volume diffusion, but this should not 
be misleading. Diffusion controlled by sur- 
face migration is not addressed. Nor is zeo- 
lite-type intracrystalline microporosity; 
otherwise, the results should apply to most 
type of porous materials. 

II. RELATIONS AMONG PROPERTIES OF 
POROSITY 

It is necessary first to catalog the proper- 
ties of connected porosity on which r will 
depend. Some of these are ordinarily mea- 
sured in material characterization. Some 
will be inferred but fall into a mathematical 
framework such that they can be profitably 
utilized even though unmeasured. 

1. Properties of Total Connected Porosity 

“Connected porosity” is depicted as a 
random network of interconnected cavities 
of unspecified sizes and shapes, called 
“pores,” Every pore is seen as bounded by 
two branching intersections or “junctions” 
of high connectivity, i.e., each with a multi- 
plicity of other pores. Let the sum of all 
pores in a given body be Fi3 per cm3 of nomi- 
nal body volume. Then Z2 pores intersect 1 
cm2 of body surface and Fi connected pores 
can be identified with 1 cm of body length, 
in any direction. 

Every pore can be characterized in con- 
cept by its length lr between the center 
points of its two bounding junctions. A dif- 
fusion flux through each pore would be pre- 
dominantly parallel to this 1,, i.e., from 
junction to junction. Though each l,, is ori- 
ented uniquely, random orientations are as- 
sumed overall. Let i be the scalar average 
of all 1,. 

Each pore also has a volume, up, from 
which a mean cross section area for diffu- 
sion through the pore can be derived. If V is 
the average of all up, then the total void 
volume fraction isf = V,d = E3fi. Here fis 
in cm3/cm3; V, is the total specific volume in 
cm3/g of body, and d is the nominal body 
density in g/cm3. These latter quantities are 
directly measurable, V,, for example, by 
mercury porosimetry and d, for example, 

by measuring body weight and dimensions 
or by weighing in nonpenetrating immer- 
sion liquids. 

If S is the average of the wall areas sp of 
all pores in a given body, then the total spe- 
cific surface area, S, in cm2/g, is accounted 
for by S,d = i13F. This S, is directly measur- 
able, for example, by simple BET nitrogen 
adsorption. 

Mensuration formulae adopted for pore 
volume and surface area are of nominal 
“cylindrical” form (6, 7, II, 14, 15), but are 
applied to overall mean dimensions as V = 
rp2i and S = 2~2 without imputing cylin- 
dricity to every pore. In these terms V, and 
S, are evident, and their ratio is S,lV, = 2/t?. 
Early measurements of V, and S, seemed to 
support this relation (6), but uncertainty 
was introduced by the approximations then 
used for the overall mean pore radius p. 
The recent compilation and further contri- 
butions of Davis (16) may seem at least as 
much to undermine as to support this sim- 
ple ratio. But the determination of p in Sec- 
tion IV will remove apparent experimental 
discrepancies. 

The underlying mensuration formulae, 
however, omit an important correction. 
Pores have finite cross sections, hence 
when they intersect both volume and sur- 
face area are lost relative to what these 
would be if each pore were separately ter- 
minated by cuts perpendicular to the ex- 
tremities of its Ep (7). Simple pore-junction 
models were sketched and the average vol- 
ume loss estimated for all (random) angles 
among the several pores joined, arriving at 
about 5rp3/4 per pore of average radius p. 
It can be anticipated that this loss will affect 
the tortuosity factor. By trial in an equation 
to be presented later, it was found that 
meeting the boundary condition Q- = 1.0 
when f = 1 .O requires restating this loss as 
about 4rp3/3 or as rp2i . 4pl3i per pore on 
average. This is only 6% greater than the 
former estimate. Its adoption is necessi- 
tated by the stated boundary condition, not 
by the models from which it was ap- 
proached. 
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The total volume correction for pore 
junctions then becomes fi3rp2i . 4pl3i, and 
the corrected total pore volume fraction is 
thenf = V,d = E%rjF*t( 1 - 4pl3i). The cor- 
responding surface area loss will not be 
needed for calculating T. It is simply as- 
sumed to be such as not to disturb the ratio 
&IV, = 2/p when the corrected V,d and S,d 
are both employed. This assumption too 
will be validated by the determination of p 
in Section IV. 

2. Pore Chains as Independent Diffusion 
Paths 

The equation for f given last above in- 
cludes the terms E3, p, and i; but none of 
these is directly measurable. The following 
will add to the foundations underlying r, 
while permitting the elimination of some of 
these immeasurables. 

Consider a right cylindrical porous body 
of length 2 cm in the direction of uniaxial 
diffusion and of area 1 cm2 on each of its 
faces. Assume that all its pores participate 
in diffusion; hence there are ii2 diffusion 
paths in this body, each of E pores per cm 
connected in one continuous chain substan- 
tially parallel to the Z axis (6, 14, 15). This 
is a formal assumption. Furthermore, in ig- 
noring blind or inaccessible pores, the as- 
sumption has in some cases been contrain- 
dicated (17-f9), and some models have 
been designed to account for pores contrib- 
uting to total volume but not to diffusion 
(20, 21). Nevertheless, this assumption 
provides a limiting model for the maximum 
possible mass transport through a given po- 
rosity. 

Useful corollaries ensue. The mean pro- 
jection of randomly oriented pores on the 
diffusion axis is 2ilrr per pore; this is the 
mean of l cos (Y for 0 I (Y I 5-12, where (Y is 
the acute angle made between the direction 
of each 1, and that axis. The cumulative 
length of a macroscopically “straight” 
chain of E connected pores (viz., a shortest 
diffusion path) is 2, while its projected 
body length is accordingly 2&r = 1 cm; 
hence the shortest path through Z cm of 

body is 7rZ/2 cm long. It also follows that ?i 
= rr/2i. Given the immense number of op- 
portunities for path selection implied by ?i3 
and that the path length condition rZ/2 can 
be met even by a semicircular path of diam- 
eter of curvature Z, it is also assumed that 
all real diffusion paths are sensibly equal in 
length to this shortest path (6, 7). The 
power of these relationships in eliminating 
variables will be exercised presently. 

3. Subdivision of Porosity into Groups: 
Group Properties 

Pores have so far been considered as 
comprised of an unspecified range of indi- 
vidual effective radii, pp. To approach pore 
radius as potentially measurable, collect or 
group together all pores in a given body 
whose effective radii fall within a very nar- 
row interval about a selected pi such that pi 
can represent the mean of this interval. If 
there are r$ pores in the interval per cubic 
centimeter of body, of individual volumes 
averaging Ui and surface areas averaging Si, 
then the “group” volume fraction is Af; = 
AV;d = r&i and the “group” surface area is 
AS;d = n!f;. The total porosity can then be 
described as the sum of m contiguous pore 
groups of progressively increasing pi, viz., 
indexed by i = 1 to i = m. Here pI repre- 
sents the smallest group present which con- 
tributes a detectibly nonzero AV, or AS,; 
and P,,, represents the maximum size group 
present, likewise contributing a detectibly 
nonzero AV,,, or AS,. The group properties 
described above are obviously additive. 

It is taken as Axiom 1 that some group 
mean pore length li exists such that the vol- 
ume and surface mensuration formulae of 
Subsection 1 also apply to each group sev- 
erally. But the pore intersections dictating li 
in a common network of E3 pores/cm3 will 
be in general far more frequent than if the 
total porosity consisted of only a single 
group of n; pores/cm3. This means that the 
corrected pore volume must be written for 
any ith group as AA = A Vid = n:,pfli( 1 - 
4p/3i), wherein the bracketed quantity is a 
mean property of the common total net- 
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work. Quite evidently, when this AA is 
summed over all i to givef, the result agrees 
with that approached from descriptors of 
the total porosity. The same qualities are 
imputed to the construction and summation 
of a corrected group surface area ASid; and 
it follows from this axiom that ASilAVi = 2/ 
p;. Thus group properties are taken axio- 
matically to comprise sets that are mathe- 
matically consistent with the properties of 
total porosity, and which yield those by 
summing. 

Axiom 2 concerning pore groups relates 
to their analysis, severally, into indepen- 
dently acting, interpenetrating sets of diffu- 
sion paths. This axiom postulates that 
every relationship of Subsection 2 can be 
rewritten separately for every one of the m 
pore groups comprising a total porosity. 
Thus every ith group can be treated for uni- 
axial diffusion as if it provides n: diffusion 
paths/cm2, each consisting of Iii connected 
pores per centimeter in the diffusion direc- 
tion 2. Each path length in 2 cm of body 
remains 1rZl2 cm, and ni = Tl2li as previ- 
ously. The signal difference between these 
group relationships and those of Subsection 
2 is that here every ith-group diffusion path 
consists entirely of pores of radius close to 
Pi. 

This axiom is operational, not pictorially 
descriptive. It is implicit in all prior “cylin- 
drical-path” diffusion models (6, 7, 11, 14, 
15). Further, it can be shown to lead mathe- 
matically to the same mass transport rate 
through a given porosity as that obtained 
when overall pore properties are used (Sec- 
tion III). It is here adopted on these 
grounds. 

4. Consolidation of Geometrical Relations 

Overall volume fraction. The corrected 
equation for f of Subsection 1 can be com- 
bined with n = rr/2i to eliminate K3, yield- 
ing: 

f= v,d = (d/s)(p/i)Z . (I - 4p/3i). (I) 

This equation relates the parameter (p/f) 
solely to the total volume fraction; it has 

only one physically acceptable root. Fig. 1 
includes a plot of the inverse, viz., of the 
ratio (i/p), and a curve of (1 - 4p/3i) com- 
puted from Eq. (l), vs f = V,d on a log 
scale. Thus the immeasurables iI and i have 
been replaced by a mean pore aspect ratio 
which is determined by V, and d alone. This 
computed ratio is independent of F per se, 
thus applies to any pore size distribution. 

Group volume fraction. The correspond- 
ing deduced equation for Ah of Subsection 3 
is likewise combined with ni = r/2li to yield 

Afi = Avid = (r4/8)(pi/li)’ * (1 - 4p/3i). 

(2) 

For a given material, if V, and d are mea- 
sured the last bracket above is determined 
by Eq. (1) or Fig. 1. Then Eq. (2) relates the 
group pore aspect ratio (pilli) uniquely to 
the group volume fraction. The correct 
measurement of AVi by Hg porosimetry is 
necessarily deferred (Section IV), but that 
measurement is confidently expected. The 
solution of Eq. (2) is independent of both pi 
and ii per se. 

Surface/volume ratio. This ratio will be- 
come important in Section IV. In rear- 
ranged form, corrected surface area/vol- 
ume ratios are recapitulated as 

s, = 2v&i and ASi = 2AVilpi. (3a) 

Invoking S, = 2 ASi and V, = 5 AVi, 
1 I 

it is readily derived that 

1 i AVilpi 
1 -= 

P VS 
c (llpi), (3b) 

wherein the identity sign means (Gi) is de- 
fined by its preceding ratio. 

Diffusion path relations. Recapitulating 
from Subsection 2, a total porosity com- 
prised of ii3 pores/cm3 provides ii* uniaxial 
diffusion paths/cm2, each of “tortuous” 
length 7rZ/2 cm over a nominal body length 
of Z cm. But each path is of a mean radius p 
cm which might be the mean of widespread 



TORTUOSITY FACTOR FROM POROSIMETRY 

Pore Volume Fraction, f 

0.05 0.075 0.10 0.15 0.2 0.3 0.4 0.6 0.8 1.0 

Left Outer Scale 

405 

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 

LoglP Pore Volume Fraction, Log f 
LO 

FIG. 1. Mean pore parameters and derived T”., vs log pore volume fraction. 

pp values unless Axiom 2 is obeyed by na- 
ture. A mass transport through this total 
porosity can be computed using these rela- 
tions together with a mean path cross sec- 
tion area of rrp*. 

Of still greater utility but explicitly sub- 
ject to Axiom 2, a pore-size group com- 
prised of n? pores/cm3 provides (from Sub- 
section 3) n? uniaxial diffusion paths/cm2, 
each of tortuous length 7rZ/2 cm over a 
nominal body length of Z cm, while every 
path is of relatively homogeneous radius 
about pi cm. From this base the mass trans- 
port through the total porosity can be ob- 
tained by summing that computed for each 
ith group over all m values of i, with path 
cross section areas 77~;. 

The above two anticipated approaches 
to computing diffusional mass transport 
should yield the same result. This presump- 
tion will be tested once in Section III; then 
either approach will be validated for subse- 
quent use as may be convenient. 

III. CONSTRUCTION OF rc FOR CYLINDRICAL 
DIFFUSION PATHS 

The construction of r, per se depends 
solely on the preceding measurables. It is 
therefore presented here in sequence, be- 
fore preparing for 7 in general. 

A working definition of a “cylindrical” 
diffusion path is that the variation in its ra- 
dius does not exceed the width of a pore 
group radius interval, hence each group 
path radius can be treated as of constant pi 
as a reasonable approximation. Axiom 2 of 
Subsection II.3 may resemble a presump- 
tion of path cylindricity, but in fact this is 
not necessarily so. Criteria for path cylin- 
dricity or noncylindricity will be clearly de- 
veloped out of Hg porosimetry data in Sec- 
tion IV. Until then, path cylindricity will 
here be temporarily imposed as a condition 
of the simplest construction of a tortuosity 
factor which is accordingly called T,. Real 
porous materials satisfying this condition 
are not especially common, but they do ex- 
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ist. Intuitively, they are most likely to be 
materials exhibiting unimodal porosity. 

1. Unimodal Porosity with Cylindrical 
Paths: T,, 

Set up steady-state uniaxial diffusion 
through a cylindrical porous specimen, 
such that a diffusant concentration differ- 
ence AC (moles/cm3) exists over nominal 
specimen length 2 cm. The mean concen- 
tration gradient through each diffusion path 
is then 2A&rZ. Using Fick’s 1st Law to 
describe volume diffusion through a single 
group path of mean radius pi, the mass 
transport rate Nni in that one path is 

Nni = -~pFD(pi) * 2Ac/rZ. (4) 

Here D(pi) is as suggested by Section I in 
cm%ec. There are n’ such group paths/cm2 
of normal specimen face. Multiply by this 
and replace nf by (r/21i)2 to obtain the area1 
mass transport rate through the entire ith 
pore group, N&y in moles/set per cm2 of 
specimen face: 

NAi = -(n2p?/21f) * D(pi) * AC/Z. (5a) 

But (_~r~p?/21!) is, from Eq. (2), 4Aj/7r2(1 - 
4p/31). Insert this in the above, replace 4/7r2 
by 112.4674, and rearrange to yield 

NAi = - 
AclZ 

2.4674(1 - 4p/3/31‘) 
* AfiD(pi)* 

(5b) 
Now sum Eq. (5b) over all i to obtain the 
area1 mass transport rate NA through the 
total porosity. Only the last product 

AAD is affected, becoming 2 AAD( 

This is the same asf . [i AAD(pi)/2 AA] 

or V,d . [T AViD(pi)>$ AV,]. Either 

bracketed ratio of s$mmations o defines a 
mean D, called here D; and this D is funda- 
mental to correct usage of the tortuosity 
factor in any diffusion equation. 

In the unique case of unimodal porosity, 

however, if the modal pore-size interval is 
sufficiently narrow that D(pi) is linear with 

m 
pi over all i, then 2 AAD can be ex- 

pressed instead as f. D (2 AApi/i AA) 
I I 

= f * D(B). This substitution is permissible 
only for unimodal porosity, and even then 
may be only approximate. 

With D(B) so determined in this case, 
then the summation of Eq. (5b) becomes 

NA = - f - - D(B) * (AC/Z); 
2.4674(1 - 4iU31) 

(6) 

from which by the conventional notation of 
Section I, 

rut = 2.4674(1 - 4p/3i). (7) 

Recall that (1 - 4p/3i) is a function off 
alone by Eq. (l), as graphed in Fig. 1. 
Hence 7uC is also a function uniquely off = 
V,d. Figure 1 also includes the curve of T,, 
computed from Eqs. (7) and (1). This curve 
goes to 1.0 at f = 1.0 as it must (viz., the 
boundary condition referred to earlier), and 
it rises to above 2 at lowf. 

2. Construction of rc for Any PSD with 
Cylindrical Paths 

In the above derivation of ruC, the sole 
consequence of specification of unimodal 
porosity was the permissibility of replacing 
D as defined there by D(J) as an approxi- 
mation. When the pore size distribution 
(PSD) is bi- or multimodal or otherwise 
broad, Jhat substitution is patently unjus- 
tified: D must appear in Eq. (6). But other- 
wise, Eqs. (4)-(7) are quite unaffected; 
hence rC = T,~, 

The term (1 - 4p/3/3i ) appearing in Eq. (7) 
is a computational nuisance, however, and 
can be simplified. The curve of T,,, of Fig. 1 
was replotted vsfon a linear scale, with the 
resulting discovery of near-linear behavior 
over the entire range 0.05 of 5 0.95. This 
range brackets all solid catalysts of practi- 
cal interest. A linear curve approximating 
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Eq. (7) within +-2% over this range is ex- 
pressed simply as, for any PSD with cylin- 
drical diffusion paths: 

Q-c = 2.23 - 1.13V,d = x 
(0.05 5 V,d 5 0.95). (8) 

Thus ifcylindrical diffusion paths prevail in 
a given material, the only physical mea- 
surements necessary to determine its tortu- 
osity factor are V, and d. Much larger tortu- 
osity factors than 2.2 are on record, 
however, implying that many real materials 
exhibit noncylindrical paths (6). Anticipat- 
ing the usefulness of Eq. (8) in deriving 7 for 
that case (Section V), the designation “x” 
has also been assigned, above, to this func- 
tion. The follow&g will complete the treat- 
ment of 7C and D. 

3. Identity of Two Approaches to rC 

In Subsection II.4 an alternative ap- 
proach to Eqs. (4)-(8) was suggested, 
based on the properties of a total porosity 
instead of on its subdivision first into m 
contiguous pore-size groups. It will be im- 
portant later to have shown that the two 
approaches yield the same tortuosity fac- 
tor. 

Only the approach given %bove includes 
a fundamental derivation of D, however. It 
should be apparent that t$e general use of 7 
must be stated as L&E = D . f/r, and that the 
relation Deff = D(6) . f/r given in Section I is 
permissible only for unimodal porosity. 
That distinction has escaped notice in most 
prior determinations of 7 by diffusion mea- 
surements (6), an oversight responsible for 
major errors in the computed 7 for materials 
of broad PSD (12, Z3).01n the present exer- 
cise, as well as later, D as defined in Sub- 
section 1 above must be incorporated. 

With that provision, to derive 7C from the 
properties of total porosity one first re- 
places p’ by p2 in Eq. (4)Jn the next opera- 
tion one goes directly to NA by use of the 
multiplier 9 and n2 = (7~/21)~, then notes 
from Eq. (1) that (7r2p2/2i2) = 4fn2(1 - 4pl 
3i). The result is that Eqb (6) is repeated 
exactly (but incorporating D); and it follows 

that 7, is again given by Eq. (7) or (8). Thus 
both approaches give the same tortuosity 
factor. 

This observation permits use of this alter- 
native approach in Section V, a matter of 
no little convenience. It also implies a vali- 
dation of Axiom 2 given previously, in that 
Eqs. (4)-(8) depended explicitly on this ax- 
iom while the alternative approach to 7, did 
not assume it. 

IV. Hg POROSIMETRY2; NONCYLINDRICAL 
DIFFUSION PATHS 

Measurement of several parameters of 
the preceding Sections has been deferred, 
to be treated here. Mercury intrusion po- 
rosimetry can determine a reasonably ac- 
curate pi and AVi for each pore size group 
in a given specimen, and can sum AV, 
over i values at will (6, 20-12, 16, 20). It 
can also be used to det$rmine p and fi and 
to assist in obtaining D. For all of these, 
however, the output of the instrument as 
well as of BET measurement of S, has to 
be consistently interpreted. The further 
signal contribution of Hg porosimetry 
here will be the disclosure of noncylindri- 
cal diffusion paths in porous materials and 
assistance in the final construction of T 
to follow. 

1. Instrument Use and Interpretation 

Mercury bathing an evacuated specimen 
has access in principle to its entire intercon- 
nected porosity via every pore intersecting 
its external surface. But for most nonmetal- 
lic materials the interfacial contact angle is 
such as to resist Hg penetration of the 
pores. On application of increasing pres- 
sure P on the mercury, intrusion succes- 
sively fills intricate “channels” or pore 
networks of progressively decreasing 
minimum cross sections, i.e., in the nomi- 

z For introduction to the theory and practice of Hg 
porosimetry, also of BET surface area measurement, 
the unfamiliar reader is referred first to technical litera- 
ture available from the major manufacturers of these 
instruments, e.g., Micromeritics Corp. and Quanta- 
chrome Corp. 
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nal order from i = m down. Formulae exist 
for converting each P to the minimum 
equivalent channel radius p which a mer- 
cury meniscus can penetrate (16). By cut- 
ting the intrusion process up into contigu- 
ous narrow intervals, each of a starting and 
ending pressure and a starting and ending 
intrusion volume, one obtains a p - AV his- 
togram wherein p is bounded by the limiting 
indicated radii and AV is the difference be- 
tween limiting intrusion volumes of each in- 
terval. Each AV is transformed to specific 
volume by use of the specimen weight. 

At the beginning of intrusion relatively 
few largest channels are penetrated, and it 
is doubtful that all existing pore networks 
of the largest indicated radius intervals are 
reached. Soon, however, a filled large- 
channel network is established throughout 
the specimen, providing an extensive and 
growing liquid source for reaching all re- 
maining channels as P is further increased. 
Once this initial “lag” (16) is passed, the 
recorded AV values (in cm3/g) then closely 
approximate the AVi of pore groups as de- 
fined previously. This initial “lag” is mini- 
mized in practice by crushing the specimen 
into fragments, increasing the external sur- 
face area of access. 

Considering the range of channel cross 
section shapes which may be presented to 
the intruding mercury, it is some challenge 
to relate the p values indicated by the po- 
rosimeter to channel cross section area. Ar- 
bitrary adjustment of the contact angle 
for use in the P + p conversion formulae 
has been fairly successful to this end, on 
average (16). A best reasonable choice 
for each material is here assumed. 

But the bounding indicated p values of 
each interval are not necessarily bounding 
values of pi. Each p interval indicated by 
the porosimeter is clearly an interval of ef- 
fective “throat” radii in the pore network. 
The term “throat” has been used previ- 
ously at least by Lane et al. (20) and is here 
preferred over the earlier term “neck” (6, 
8, 9), too often associated with some ideal- 
ized pore shape model. Simply as channel 

constrictions halting passage of a mercury 
meniscus at a given pressure, “throat” and 
“neck” are basically synonymous. Call the 
ith interval of porosimeter-indicated radii an 
interval of oti, and let Pti itself represent the 
mean throat radius of this ith interval. 

Previously filled channels should repre- 
sent the entirety of interconnected cavities 
larger than the upper radius of the ith inter- 
val. But these also had to be accessed via 
throats all larger than that upper radius as 
well. Channels filled in the ith interval rep- 
resent the entirety of interconnected cavi- 
ties accessed by throats not larger than this 
upper radius, but might well include larger 
cavities. The lower size limit, as to both 
cavities and their throats of access, is 
bounded by the lower radius of the ith inter- 
val. It is apparent that some cavities lying 
in the interval, or even larger, will not be 
filled if they are accessible only via throats 
falling below this lower radius limit. The 
measured AVi thus corresponds to a mea- 
sured Pti and its interval, not to pi and its 
interval; and pi must always be at least as 
large as oti. 

This depiction is mindful of the “ink-bot- 
tle” pore model of McBain (22), subject 
however to the reality that channel con- 
strictions or throats can occur anywhere, 
either at or between pore junctions. Mer- 
cury intrusion is unable to make that dis- 
tinction; nor is it mathematically important. 
The germane question is how to obtain a 
meaningful pi paired with each AVi, when 
the porosimeter gives Pti. 

A method is available to do this. But to 
use it requires first addressing group pore 
volumes at radii below pp, the throat radius 
corresponding to the upper pressure limit 
of the porosimeter. Modern 60,000 psig in- 
struments will force Hg through oxidic 
throats only down to pp of roughly 1.5 nm 
or 15 A. The practical lower pore-size 
limit of ordinary BET surface area mea- 
surement is probably well below a radius 
of 0.5 nm or 5 A. The two measurements, 

2 AVi = V, by porosimetry and S, by 
I 
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BET nitrogen adsorption, have to include 
the same limiting pl. 

Sophisticated BET work can fill this gap 
(16). Familiarity with a given material may 
suggest analytical means of estimating AVi, 
. . . andpr,. . , up to pI1 (12,13X The best 
escape is assurance that there is no porosity 
below p@; and sometimes this assurance can 
be gained by calcining treatments which 
cause the smallest pores to coalesce up to- 
ward pcL without appreciably altering the 
PSD above this limit (13). In any event, this 
instrumental dilemma must be addressed in 
some satisfactory manner, called here “ex- 
tended” porosimetry, before the following 
can be used with precision. 

2. Pore Shape Factory and Its Use 

For a given porous material, a complete 
set of m pore group data is presumed, con- 
sisting of (pri, AVi) pairs determined by ex- 
tended porosimetry; and a consistent S, by 
BET measurement is presumed. Given that 
every pi 2 P,;, define some factor yi 2 1 
such that pi = YiPti. By the mensuration for- 
mulae adopted previously, Eq. (3a) is 
obeyed by each pi: AS, = 2AVilpi; hence 
this relation will continue to be obeyed 
when all m values of AS; are summed. If y is 
now taken as a suitable mean of all yi, then 
on average: 

ASi = 2AV;/yp,i; (9a> 

and the summation over all i is given pre- 
cisely by 

(9b) 

where (a), is defined using only raw po- 
rosimeter data as 

(G), E $ A Vi/pti/$ A Vi = $ A Vifpt;/ Vs. 

(9c) 

With (l/p>, determined by the measured 
data and Eq. (SC), and then inserted into 
Eq. (9b) with the measured V, and S,, y is 

computed for this material. Then on aver- 
age every 

Pi = YPti; (104 

and 

P = Ymh; (lob) 

and 

fi = y - f$ AV;p,ilVs. (IOC) 

As i can be used to obtain D(B) but only 
when porosity is unimodal (Section III), $ 
is well to include here also the relation of D 
for any PSD to the data obtained from po- 
rosimetry: 

h = 2 AV;D(yp,JlV,. (104 
I 

All of the above transformations have the 
common effect of moving the entire poros- 
imeter-indicated PSD up in p by the con- 
stant multiplier y. Though this averaged 
factor may create errors in pi at the tails of a 
PSD, at least it runs counter to the “lags” 
introduced there by the porosimeter (16). It 
creates no errocs in j5 or 8, nor likely signifi- 
cant errors in D. By forcing S, = 2VJji to 
be obeyed for all real data, it ensures a 
mathematical framework consistent with 
the mensuration formulae and other rela- 
tions of Sections II and III. In fact, the de- 
termination of p by Eq. (lob) with y ob- 
tained from experimental data quite 
satisfactorily adapts to the wide range of 
historical &/If, ratios collected by Davis 
(16), as he predicted in principle that it 
would. Discrepancies with Eq. (3a) are 
thereby removed. 

3. Disclosure of Noncylindrical Diffusion 
Paths 

Computations from instrumental data by 
Eqs. (SC) and (9b) resulting in y = 1 clearly 
indicate cylindrical diffusion paths on aver- 
age: not only is pi = pti numerically, but the 
physical implication is that cavities and 
their throats of Hg access are of about the 



410 S. C. CARNIGLIA 

same size. Pore chains comprising diffusion 
paths are thus of relatively constant radius 
throughout, granting Axiom 2 of Subsection 
11.3. 

If y is found greater than 1, on the other 
hand, not only is each pi 2 Pti but pores or 
cavities of mean radius pi are accessible to 
mercury (hence to diffusants) on average 
only through openings of smaller mean ra- 
dius Pti. Thus no matter how these are con- 
nected in diffusion paths, diffusants will ex- 
perience changes in path cross section area 
reflected by the ratio p’/& or y2. Quite evi- 
dently, cylindrical paths are simply the lim- 
iting edge of a continuum of possible path 
types. Since by its definition y cannot be 
less than 1 .O, an experimental finding of y < 
1 probably indicates error(s) in one or more 
of the physical measurements, including 
possible sampling variations. Once these 
causes are removed, adjustment of the Hg 
contact angle should be able to manage any 
remaining discrepancy (16). 

The significance of noncylindrical diffu- 
sion paths to the construction of r is that, 
when these occur, Eq. (4) fails and the en- 
tire series of Eqs. (4)-(8) require modifica- 
tion. A simplified model making these mod- 
ifications possible will next be set up, 
utilizing these same disclosures of poros- 
imetry. 

4. A Duplex Model for Noncylindrical 
Diffusion Paths 

A duplex model for noncylindrical poros- 
ity was originally proposed by Michaels 
(23) but without a foundation in measurable 
quantities. The following model is founded 
on the experimentally determined pore 
shape factor y. 

When y = 1, all throats of each radius Pti 
have been identified by the porosimeter 
with cavities of about the same radius. 
When y > 1, on average pi > Pti but there is 
no reason to assume that all throats are av- 
enues solely to larger voids. A useful postu- 
late is, instead, that the total porosity is 
comprised of void populations of two dif- 
ferent mean radii, Pt (measured) and pv 

(constructed), whose overall mean is p. 
The radii p and Pt are related and defined 
by Eq. (lob), viz., p = yPt = y/(G)t. For 
convenience analogous to this, define one 
more factor z by 

pv = Z& = z/(G),. (11) 

The mathematical description of this du- 
plex model entails finding the particular 
combination of “pore” subsets Pt and pv 
which simultaneously: (a) equates the sum 
of their volumes to that of the overall mean; 
(b) equates the sum of their surface areas to 
that of the overall mean; and (c) divides the 
total of all their inferred pore lengths, El, 
into two fractions, LX1 (identified with sub- 
set p,) and (1 - h)El (identified with subset 
Pt). The numbers of “pores” per centi- 
meter of body are nt + nv = &+ Let ld be a 
mean mathematical pore-length construct 
such that nv = r/2hkd and nt = m//2(1 - h)l+ 

Equations expressing conditions (a), (b), 
and (c) above were set up and appropriately 
combined. The (intrinsic) solution was 
found numerically for selected values of the 
independent parameter y; it consists of sets 
of simultaneous values of id/i, of X (hence 
also 1 - A), and of z. A graphical display of 
id/i vs y showed this parameter to be almost 
perfectly linear with y, very closely ex- 
pressed by 

id/i = 4.000 - o.x!o(y - 1) 
= 4.320 - 0.320 y. (12) 

Figure 2 is a plot of the simultaneous solu- 
tions for z and for A vs y, over a range of the 
latter much greater than we have found by 
porosimetry on various high-porosity alu- 
minas (12, 13) and comparable to the range 
inferred from the extensive data compila- 
tion of Davis for various materials (16). 
Given an experimental y > 1, all quantities 
describing this duplex “pore” set are fixed 
by Eq. (12) and Fig. 2. As y + 1, it is seen 
that the duplex set evolves into the overall 
mean system: pv = Pt = j5 and n, = nt = 
Z/2. 

The properties of this duplex set will be 
employed in Section V to obtain, finally, a 
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tortuosity factor r for pore systems exhibit- 
ing noncylindrical as well as cylindrical dif- 
fusion paths. 

V. CONSTRUCTION OF 7 INCORPORATING 
NONCYLINDRICAL PATHS 

It was shown in Section III that a 7 com- 
puted from the overall mean properties of a 
pore system, namely, n, p, and I, is the 
same as one built up from its m groups act- 
ing independently. The “overall” approach 
will be followed here, recognizing at the 
same time that the correct refereonce diffu- 
sivity for mass transport will be D as given 
by Eq. (10d). 

Consider steady-state uniaxial diffusion 
through a specimen Z cm in the diffusion 
direction by 1 cm2, as previously. For cylin- 
drical diffusion paths, Eqs. (4)-Q) apply. 
But if y > 1, the radius of each diffusion 
path is not constant. The duplex model 
gives, for each single diffusion path of 
length rrZ/2, a component nhZ/2 of mean 
radius pV and a component ~(1 - h)Z/2 of 
mean radius Pt. The diffusant transport 
rate, Nu, must be recomputed. Call its 
value in the duplex path Mn. 

Fick’s 1st Law equations are readily set 
up and solved for Mn. It is convenient to 
express this as the ratio NnIMn, which is 
found to be 

in which the D’s relate to the three postu- 
lated pore sets but will be dealt with later. 
Replacing the squared radius ratios by their 
equivalents in y and z notation from Eqs. 
(lob) and (1 l), one obtains 

- - 
Nn -= 
Ml 

Y2 [ 
g+(l-h);. 

1 (14) 
” t 

If now MA is defined as the duplex (non- 
cylindrical) value of the diffusant mass 
transport rate per unit face area of speci- 
men, then evidently: 

NA FPNn ii* 
-z-z 

MA 
* 5. (15) 

n@n h + 4’ WI 

i o.50vk!Y,.o 
1.0 1.5 2.0 2.5 

Parameter y =plpt 

FIG. 2. Duplex pore parameters z and A vs y. 

Invoking n, = 7r/2hld, n, = r/2(1 - A)&, and 
Eq. (12) for id/i, the above two equations 
are combined and transformed into 

- 

2 = ~~(4.32 - 0.32~)~ [$ 

+ (1 - A);]/[; + A]‘. (16) 
t 

It is of major interest to examine NAIMA 
at this point. Using Fig. 2 for z and A, Eq. 
(16) is most conveniently solved numeri- 
cally. However, in doing so, it is necessary 
to consider some characteristic values of 
the diffusivity ratios in it. 

Those ratios are unity if all diffusivities 
are Db. This limiting case occurs for a gas- 
eous diffusant when (in unimodal porosity) 
the mean pore radius fi is above about 5 
times the gas mean free path (12); or for 
liquid diffusants above the onset of “hin- 
dered diffusion” (j-.5), i.e., above about 25 
times the liquid diffusant molecular radius. 

When ideal Knudsen diffusion is in effect 
for gases (6, 7), these ratios can be readily 
shown to be ~/D, = plpV = y/z, and i?/D, = 
p/pt = y. This situation occurs when i is 
below about 0.05 times the gas mean free 
path (12). 

Figures 3 and 4 are plots of NAIMA com- 
puted from Eq. (16) for these two cases. 
When bulk diffusion governs (Fig. 3), the 
plot of NAIMA vs y is curvilinear near the 



Finally, by mathematical inference from 
L 
: 

Eqs. (18) and (20) and incorporating Eq. (8) 
.- 
2 

for x, one can write a general equation for r 
s 

2.0- as 
w 

E r = x * (0.92~)‘+~ = (2.23 - l.l3V,d) 
* (0.92~)l+~, (21) 

where E is theoslope of a log-log plot of D(p) 
vs p at D = D. 

Parameter y : plpt In the simplicity of its form, resulting 

FIG. 3. NAIMA vs y: bulk diffusion governing. 
from some very acceptable approxima- 
tions, Eq. (21) leaves the tedium of its de- 
velopment entirely behind. Its few parame- 
ters are readily obtainable by measurement. 

(1, 1) origin but near-linear for all y > 1 S. One just drops the last bracket, (0.92y)‘+“, 
In spite of the curvature, however, the lin- when y < 1.1. With that adjustment Eq. 
ear approximation given by the dashed (21) serves equally for cylindrical and non- 
curve, which is N~/h4~ = 0.92y, is good to cylindrical diffusion paths as disclosed by 
better than ~5% everywhere except near y 
= 1.0 where a noncylindrical model is un- 

y, an9 for any PSD. As discussed in Section 
III, D may be replaced by D@) in diffusion 

necessary in any event. One accordingly in- equations only if the PSD in unimodal. The 
serts Eq. (6) for NA into this relation and next Section describes practical usages of 
rearranges explicit in MA, obtaining: Eq. (21). 

MA = 
-f - . b - AclZ. VI. PRACTICAL COMPUTATIONS OF 7 

0.92~ * 2.47(1 - 4pl31) 
(17) 

For any ordinary material capable of po- 
rosity characterization by mercury poros- 

From the identity of Eqs. (7) and (8) it fol- imetry, the data needed for computation 

lows that, with x given by Eq. (8): of its tortuosity factor consist of: 
(a) Its extended porosimetry Pti - AVi 

r = 0.92~~. (18) 

When ideal Knudsen diffusion governs 
(Fig. 4), the plot of NA/MA vs y2 is compara- 
bly near-linear. The dashed curve used as 
approximation in this figure is NA/MA = 
0.846~~ = 0.922y2. Again the only significant 
error occurs near y = 1.0, whereas again a 
noncylindrical model is inappropriate 
there. By insertion of Eq. (6) into this sim- 
ple function and rearranging, one obtains 

data over all i, and 2 AVi = V,; 

MA = 
-.f 

0.922y2 - 2.47( 1 - 4$3i ) 
. b - AC/Z. 

(19) 

Again using Eqs. (7) and (8) interchange- 
ably, it follows that: 

r = ~(0.92~)~. (20) FIG. 4. NAIMA vs y? Knudsen diffusion governing. 

412 S. C. CARNIGLIA 
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(b) Its total BET specific surface area, S,; 
(c) Its nominal density, d; and 
(d) A log-log plot of D(p) vs p for the 

diffusant system and conditions of in- 
terest. 

One then carries out the following opera- 
tions in sequence: 
(A) Enter V, and d into Eq. (8) to obtain 

the quantity “x;” 
(B) From the raw porosimeter data, de- 

termine (G), by Eq. (SC); 
(C) Enter (G)t, V,, and S, into Eq. (9b) to 

obtain the quantity “y;” 
(D) If y < ld 1, then T = x. Execute (E) to 

obtain D, then stop. 
(E) If y > 1.1, from the D(p) vs p curve 

determine D(yp,i) for every Pti of the 
porosimetry data and perform Jhe 
arithmgtic of Eq. (10d) to obtain D; 

(F) Enter D on the log-log plot of D(p) vs 
p and obtain the slope there, which is 
“ .‘7 

(G) Eider x, y, and E into Eq. (21) to de- 
termine 7. 

If j? is sought instead (for unimodal po- 
rosity), then (E) is simpler: using the po- 
rosimetry data with y, obtain fi by 
Eq. (10~). The D(B) and the log-log slope 
at D(i) are obtained from the diffusivity 
curve, and (G) follows. 

Experience (13) indicates that the poros- 
imeter intervals should not exceed a radius 
ratio (max. to min. of the interval) of 1.5 : 1. 
If this is observed, Pti can safely be taken as 
the logarithmic mean of the interval: it will 
be within 2% of either the ordinary or the 
inverse mean. A total number of intervals 
(i.e., m) of 20 to 25 should ordinarily be 
sufficient; these need not be of (logarithmi- 
cally) equal width. The numerical opera- 
tions entailed in obtaining 7 as above are 
tedious if performed manually, but can 
readily be reduced to machine calculation 
in most cases. In porosimetry on aluminas, 
we have used Hg contact angles of 135” to 
140”. 

Many porous materials of interest in ca- 
talysis are bimodal, the micropores (i.e., 
mode “1”) and macropores (mode “2”) 

arising relatively independently from differ- 
ent aspects of their processing history. 
Some approaches to diffusion kinetics have 
preferred to treat the two pore sets quite 
separately (e.g., (10)). To do this requires 
separate fi and f2, D(&) and D(&), and 7l 
and r2. But the procedure developed here 
for computing r is based on a y obtained 
from the entire PSD. If separate 71 and r2 
are to be computed, in consistent notation 
separate xl and x2, yi and y2, and el and ~2 
are needed. Since intraparticle micropores 
and interparticle macropores are parallel 
but independent sets (IO), Eq. (8) suffices 
(with fi and f2) to produce x1 and x2 ; and &i 
and c2 present no problem. But without 
very sophisticated BET work there is no 
effective way to obtain yI and y2 from mea- 
sured properties of the porosity. Such BET 
work entails additional problems (16). 

A way has been found to circumvent this 
dilemma. Usually the micropore mode is 
relatively narrow in such materials (11, 24). 
When this is so, y1 can be estimated be- 
tween 1 .O and 1.2. Given the isolated modal 
Vs, from porosimetry and the estimated yl, 
Eq. (9b) can be solved for the modal S,,. 
This is then subtracted from the measured 
total S,, the difference S,, attributed to the 
macropores. Then all data are in hand per- 
mitting the determination of y2. Separate 
computations of rl and r2 by Eq. (21) are 
thereby facilitated: note that in this case, 71 
= XI. 

An example of this device is included in 
Subsection VII.2, giving reassuring results. 
In most cases of kinetic analysis (e.g., (II, 
12)) the PSD is not treated as isolated 
modes, and this device is unnecessary. The 
physical data of (a)-(d) above and the nu- 
merical operations of (A)-(G) above are 
sufficient, giving an overall 7. 

VII. TESTS OF THE COMPUTED 7 

I. Comparison With Diffusion-Determined 
Values at Large 
We do not presently determine T by diffu- 

sion, so direct comparison in materials for 
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TABLE 1 

Present Computed 7 vs Diffusion-Determined Values: Various Oxidic Materials and Catalysts 

Materialsa Original datab Present computations by Eq. (21)b 

f 7 7 X Y E 

Unbonded compacts (300) 
Unbonded compacts (300) 
Leached Vycor (19,118,199,166,260) 
Leached Vycor (141,310,360) 
-y-Alumina (293) 
Refractory oxide (293) 
Silicas and silica-aluminas (122,308,348) 
Silicas and silica-aluminas (122,377) 
Silicas and silica-aluminas (122) 
Silicas and silica-aluminas (122) 
Silica-alumina catalysts (378) 
Silica-alumina catalysts (378) 
Silica-alumina catalysts (39) 
Chromia-alumina catalysts (293) 
Chromia-alumina catalysts (378) 
Supported metal catalysts (293) 
Supported metal catalysts (293) 
Hydroprocessing catalysts (293) 
Hydroprocessing catalysts (293) 
Hydroprocessing catalysts (293) 
Hydroprocessing catalysts (293) 

0.31 1.8 1.9 1.88 1.0 - 
0.22 2.5 2.45 1.98 1.3 0.2 
0.30r 5.9 5.82 1.89k 1.9r 1.0 
0.292 3.1-10.5 5.8? I.902 1.9* 1.0 

0.38-0.53 3.7% 3.2k 1.7k 1.5* 1.0 
0.115 2.9 3.42 2.10 1.5k 0.5 
0.47% 2.1- 5.7 3.3* 1.70-c 1.52 1.0 
osor 2.3- 4.6 3.2+ 1.66+ 1.5+ 1.0 
0.562 2.5- 3.4 3.0+ 1.592 1.5+ 1.0 
0.68 2.1 2.4% 1.46 1.42 1.0 
0.352 7.4- 8.7 5.62 1.84k 1.9* 1.0 
0.52 I& 4.7 3.02 1.6-c 1.5* I.0 
0.52 2.1- 3.8 3.1* 1.642 1.5k 1.0 
0.45 4.4 3.3+ 1.72 I.52 1.0 
0.56? 1.62 1.6k 1.6? 1.0 - 
0.412 2.8- 3.9 2.9-3.3 1.76+ 1.5r+- 0.5-1.0 
0.49-c 7.25 5.1% 1.672 1.9r 1.0 
0.35 4.8t 5.0* 1.83 1.9* 0.8 
0.39 3.9 4.12 1.79 I.92 0.5 
0.41 3.8 5.42 1.77 1.9* 1.0 
0.49 7.1 5.1-c 1.68 1.95 1.0 

a Reference numbers given in (6). 
b “k” = typ. 1-3 in last significant figure. 

which we have determined y is not possi- 
ble. However, we have enough experience 
in porosimetry (13) to permit the estimation 
of y, given even rudimentary information 
describing porous oxides. Satterfield (6) 
has collected gas-diffusion-measured 7 val- 
ues for a host of these, together with suffi- 
cient other data for the independent estima- 
tion of 7 by Eq. (21). A comparison of the 
computed values and their makeup with the 
original r values (6) is shown in Table 1. 
Here, x is obtained from the given f; y is 
estimated from the descriptive information 
(6), lacking porosimeter histograms; and E 
is estimated from indications (6) of the dif- 
fusion region (bulk, Knudsen, or mixed) 
governing in each case. Agreement be- 
tween the present computed T values and 
the original diffusion-determined values is 
on the whole remarkable. 

2. Application to Diffusion Data of 
Wakao and Smith 

These authors (10) made five essentially 
unbonded pseudoboehmite alumina com- 
pacts, “A, ---, E,” by techniques which 
in general affected only the macroporosity 
of a bimodal distribution. They measured 
binary (Nz, He) gas diffusion through these 
at successively higher total pressures, “1, 
2, 3, ---.” Their premise in treating diffu- 
sion kinetics was, in present notation, Deff 
= f2D(i) separately for each pore mode. 
From this premise it has been inferred (e.g., 
(6)) that 7 = l& Besides the difficulty with 
this mentioned in Section I, taken literally 
with theirf2 data it results in 72 values run- 
ning up to > 11. The present methods imply 
improved interpretation of porosimetry rel- 
ative to their “shifted block” model as well 
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TABLE 2 

Nitrogen Diffusion Data of Wakao and Smith Treated by Present Method 

fl 

Micropores MKKTpOWS z Obs. [IO] 
MA x 104 MA x IO' 

Pt = P = P". MA, x I@ /z ‘? = pip, .‘1? Ty MA, x IO’ 
km'lcm') (A) PI (molelcm~ xc) (cm'lcm' 

Al 0.1; 20. I.00 0.63 
2 1.72 
3 3.77 
4 5.38 

Bl 0.27 20. 2.03 0.45 
2 7.75 

Cl 0.33 20. 5.52 0.34 
2 10.70 

DI 0.39 20. 4.32 0.18 
2 10.79 
3 II.75 
4 17.48 

El 0.42 20. 7.51 0.09 
2 IS.66 

as adaptation to its implicitly noncylindrical 
porosity, neither being available at the time 
of their work. Accordingly, it was felt use- 
ful to try the present construction of 7 on 
their specimens. 

The published data (IO), even augmented 
by a companion paper by Mischke and 
Smith (24), were of insufficient detail for 
the determination of y by Eq. (9b). How- 
ever, y1 for micropores can be taken as 
about 1 by the device mentioned in Section 
VI, and y2 could be estimated for each of 
Compacts A to E from our experience (13). 
From the givenfi andf2 (IO), xl and x2 were 
determined by Eq. (8) and r1 was accord- 
ingly taken as 71 = xl. For r2, a2 was esti- 
mated for each compact by the original 
methods (10) but using a y-corrected fi 
value for D(B) in place of each original 8. 
Then with each x2, ~2, and a2 in hand, r2 was 
computed by Eq. (21). 

Contrary to the view originally taken 
(IO), it is felt that the all-micropore and the 
micro-macropore diffusion paths are one 
and the same in these compacts. This re- 
duced the number of transport computa- 
tions to two (viz., all-micro and all-macro), 

(mole/cm2 set) 

I.20 1.51 1.67 0.0243 0.0244 0.0247 
0.0235 0.0237 0.0235 
0.0300 0.0304 0.0320 
0.0306 0.0311 0.0334 

1.42 1.71 2.40 0.00973 
0.01237 

0.00993 
0.01315 

0.0+X318 
0.00975 

0.00957 
0.01293 

1.46 1.83 2.88 0.00763 
0.00868 

0.00805 
0.00983 

I.55 2.03 3.83 0.00157 0.00200 0.002112 
0.00275 0.00383 0.003631 
0.00276 0.00394 0.003947 
O.cQ3lS 0.00490 0.004914 

1.83 2.15 6.07 O.OW60 0.00135 0.001409 
o.OOQ93 0.00250 0.002408 

with no significant quantitative effect in 
four of the five materials since macropore 
transport was dominant in these. The bi- 
nary N2 diffusion equations (IO) were used 
to compute the area1 micropore and macro- 
pore mass transport rates for each material 
and conditions of diffusion, and these were 
summed to give the total area1 N2 mass 
transport for comparison with each mea- 
sured value (10). 

Table 2 lists the most important present 
computation results, accompanied by a 
minimum of the original data. The results 
are gratifyingly consistent, both internally 
and by comparison with the experimentally 
observed N2 transport data (cf. last two 
columns). Original data taken (10) at pres- 
sures much in excess of 5 atm were not 
used in this exercise, since those tabulated 
seem sufficient. 

Table 2 indicates 72 values all within the 
ordinary range for aluminas, as computed 
by the present methods (13) or compared 
with Table 1. Wakao and Smith graphically 
illustrated a linear empirical semilog rela- 
tion between their 62 and pore volume frac- 
tion f (JO), that could have confounded p- 
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dependencies of transport properties with 
f-dependencies and hence made their prem- 
ise D,E = f’D(B) appear reasonable. But 
other material fabrication methods (espe- 
cially, of bonded materials) generally do 
not produce the same correspondence; 
hence their premise and its suggestion that 
Q- = l/f is probably contraindicated unless 
proved applicable. Table 2 shows that even 
then it is unnecessary. The classical rela- 
tion D,ff = (fl~)D(;) appears quite upheld 
here without using an imputed relation be- 
tween 7 and f alone. 

A similar analysis of the recent NZ gas 
permeation data of Valu5 and Schneider, 
(II) who used compacts also formed of 
pseudoboehmite but calcined to a-AlzOs, 
was reinforcing to the above suggestions. 
These authors expressed difficulty in deter- 
mining 7 by their model; but the present 
analysis indicated that (a) T increased regu- 
larly from 2.75 to 3.49 with increasing form- 
ing pressure at fixed calcining T = 12OO”C, 
and (b) 7 behaved somewhat irregularly but 
started at 2.79 and ended at 2.68 for a series 
of lightly compacted specimens calcined at 
temperatures increasing regularly from 
1200°C up. Again, all these 7 values are per- 
fectly reasonable for aluminas, and are in 
accord with the measured N2 transport 
data (II). In neither of these series of 
specimens is 7 = l/f (or Q = l/f2 by in- 
ference) even close. 

VIII. CONCLUSIONS 

The present mathematical development 
has resulted in a simple equation for the 
numerical computation of 7, calling for or- 
dinary physical property data for porous 
materials and ordinary diffusant systems. 
This equation is easy and economical to use 
and realistic in its physical construction. It 
relates 7 understandably to its contributing 
properties including the measurable occur- 
rence of “noncylindrical” porosity. It does 
demand a departure from past relatively lax 
approaches to instrumental porosimetry, 
engendered by past inability to make in- 
formed use of it. 

Computed 7 values using this equation 
are in good agreement with those measured 
by diffusion for a large number of catalysts 
and other porous materials described in the 
literature. This work has emphasized the 
fpndamental relationship D,E = D *JT, with 
D explicitly defined; and has shown that D 
may be replaced by O(B) only in limited 
circumstances, with fi also carefully de- 
fined in relation to the direct output of Hg 
porosimetry. Application has been shown 
equally successfully to the entire porosity 
of a material and, severally, to the isolated 
modes of bimodal porosity. 

Surface diffusion as limiting is not en- 
compassed, and available tests do not in- 
clude extremely high-pressure diffusant 
systems. Computation of 7 by the given 
equation is accordingly recommended at 
this time for “moderate” diffusion condi- 
tions . 

APPENDIX NOMENCLATURE 

D diffusivity. &: bulk value. D(p): 
function of path radius p. D(B): 
value Of D(p) at p =,fi. D(pi): 
value of D(p) at p = pi* D: mean of 

D(oi) over all pi 
M mass transport rate in duplex (non- 

cylindrical) diffusion paths. MA: 
area1 value through all porosity. 
Mn: value in any one duplex path 

N mass transport rate in cylindrical dif- 
fusion paths. NA: area1 value 
through all porosity. NAi: area1 
value through all paths of radius 
pi, Nn: average value in a single 
path. Nni: value in one path of ra- 
dius pi 

PSD pore size distribution: a set of paired 
(pi, AVi) or (oti, AVi) data for 
every i from 1 to m in a given ma- 
terial, obtained by Hg-porosime- 
try extended to i = 1 

S, specific surface area of all porosity 
in a body 

Asi specific surface area of all porosity 
of the ith size group (radius pi) in a 
body 
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V, specific void volume of all porosity 
in a body 

AVi specific void volume of all porosity 
of the ith size group (radius pi) in a 
body 

Z length of a body or specimen in the 
direction of uniaxial diffusion 
through it 

c concentration of a diffusant at a 
given point or station 

d nominal density of a porous body: 
weight/nominal (external) volume 

f void volume fraction of all porosity 
in a body 

AA void volume fraction of all porosity 
of the ith size group (radius pi) in a 
body 

i integer designating one of a set of 
contiguous pore size groups or 
pore radius intervals from small- 
est (i = 1) to largest (i = m) 
present in a given body 

I pore length between adjacent junc- 
tions. i: average of all I,. ld : a con- 
struct used in a postulated duplex 
(noncylindrical) model. li: average 
of 1, for all pores of the ith size 
group. 1,: length of any one pore 

m number of pore size groups compris- 
ing a total porosity; or, the index i 
of the largest group present in a 
body 

IE number of pores per centimeter of 
body, defined by n3, the number of 
pores in 1 cm3 of body. E: total 
representing all porosity. &: total 
of postulated duplex (noncylindri- 
cal) pore set. Izi: total of all pores 
of the ith size group. n, and TZ”: 
totals of the smaller and larger 
subsets, respectively, of a duplex 
set 

s pore-wall surface area. S: average of 
all sp. Si: average of sp of all pores 
of the ith size group. sp: surface 
area of any one pore 

u pore volume. 6: average of all up. Vi: 
average of up of all pores of the ith 
size group. up: volume of any one 
pore 

x a factor of T as constructed; a speci- 
fied function off = V,d 

y a factor of T as constructed; deter- 
mined from extended porosimetry 
and surface area data 

z the ratio pJpt in a postulated duplex 
(noncylindrical) pore set; function 
OfY 

(Y acute angle made between 1, of any 
pore and the macroscopic diffu- 
sion axis 

E exponent of y appearing in T as con- 
structed; obtained from D(p) vs p 
data 

A fraction of C1 or of Id comprised of all 
larger pores (see py) of a postu- 
lated duplex, noncylindrical set. 
(I - A): fraction comprised of all 
smaller pores (&) of that set 

p radius or effective radius of a pore or 
cavity or a connected chain or 
channel of same. 6: volume- 
weighted mean of all pp hence of 
all pi. ,5: volume-weighted inverse 
mean of all pp or all pi. Pt : mean of 
all smaller pores of a postulated 
duplex, noncylindrical pore set. 
pv: mean of all larger pores of the 
duplex pore set. pi: mean of a nar- 
row radius interval defining the ith 
pore size group. pl: mean of the 
smallest pore size group present, i 
= 1.P ,,,: mean of the largest pore 
size group present, i = in. pcL: 
smallest radius penetrable by a 
mercury porosimeter. pr: radius 
of any one pore. pti: mean of a nar- 
row radius interval as indicated 
by the Hg porosimeter, hence 
of “throats” in the pore net- 
work, defining the ith pore size 
u-w 

T tortuosity factor, defined by&r = b 
. f/r; as constructed here, for the 
total porosity of a body or speci- 
men. 7,: value of G- for the special 
case of cylindrical diffusion paths. 
Q-I: T computed separately for the 
micropore mode of a bimodal 
PSD. r2: T computed separately 



418 S. C. CARNIGLIA 

for the macropore mode of a bi- II. ValuS, J., and Schneider, P., Appl. Catal. 16, 329 

modal PSD (1985). 
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